Registered Hex PECL to TTL Translator

Description

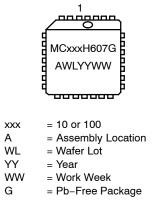
The MC10H/100H607 is a 6-bit, registered PECL to TTL translator. The device features differential PECL inputs for both data and clock. The TTL outputs feature 48 mA sink, 24 mA source drive capability for driving high fanout loads or transmission lines. The asynchronous master reset control is an ECL level input.

With its differential PECL inputs and TTL outputs the H607 device is ideally suited for the receive function of a HPPI bus type board-to-board interface application. The on chip registers simplify the task of synchronizing the data between the two boards.

The device is available in either ECL standard: the 10H device is compatible with MECL $10H^{\text{M}}$ logic levels, with a V_{CC} of +5.0 V, while the 100H device is compatible with 100K logic levels, with a V_{CC} of +5.0 V.

Features

- Differential ECL Data and Clock Inputs
- 48 mA Sink, 24 mA Source TTL Outputs
- Single Power Supply
- Multiple Power and Ground Pins to Minimize Noise
- Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

MARKING DIAGRAM*

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

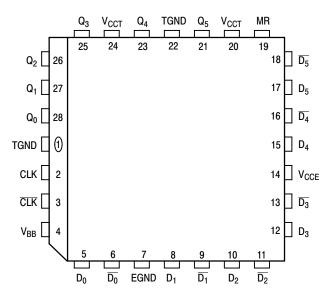
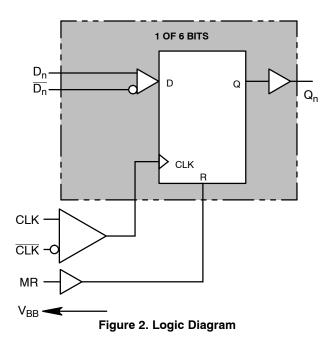



Figure 1. Pinout: PLCC-28 (Top View)

Table 1. PIN NAMES

Pin	Function
$\begin{array}{c} \underline{D_0} - \underline{D_5} \\ \overline{D_0} - \underline{D_5} \\ CLK, CLK \\ MR \\ Q_0 - Q_5 \end{array}$	True PECL Data Inputs Inverted PECL Data Inputs Differential PECL Clock Input PECL Master Reset Input TTL Outputs
V _{CCE} V _{CCT} TGND EGND	PECL V _{CC} TTL V _{CC} TTL Ground PECL Ground

Table 2. TRUTH TABLE

D _n	MR	TCLK/CLK	Q _n + 1
L H X Open Input	L L H X	Z Z X X	

Z = LOW to HIGH Transition

			$T_A = 0^{\circ}C$		T _A =	T _A = 25°C T _A =		85°C	
Symbol	Characteristic	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{INH}	Input HIGH Current			255		175		175	μA
I _{INL}	Input LOW Current			0.5		0.5		0.5	μA
V _{IH}	Input HIGH Voltage	V _{CCT} = 5.0 V	3830	4160	3870	4190	3930	4280	mV
VIL	Input LOW Voltage	V _{CCT} = 5.0 V	3050	3520	3050	3520	3050	3555	mV
V_{BB}	Output Bias Voltage	V _{CCT} = 5.0 V	3600	3710	3630	3730	3670	3790	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. PECL V_{IL}, V_{IH}, V_{OL}, V_{OH}, V_{BB} are given for V_{CCT} = V_{CCE} = 5.0 V and will vary 1:1 with power supply.

			T _A = 0°C		C T _A = 25		25°C T _A = 85°C		
Symbol	Characteristic	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{IH}	Input HIGH Current			255		175		175	μA
IIL	Input LOW Current			0.5		0.5		0.5	μΑ
V _{IH}	Input HIGH Voltage	V _{CCT} = 5.0 V	3835	4120	3835	4120	3835	4120	mV
V _{IL}	Input LOW Voltage	V _{CCT} = 5.0 V	3190	3525	3190	3525	3190	3525	mV
V _{BB}	Output Bias Voltage	V _{CCT} = 5.0 V	3600	3720	3600	3720	3600	3720	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. PECL V_{IL}, V_{IH}, V_{OL}, V_{OH}, V_{BB} are given for V_{CCT} = V_{CCE} = 5.0 V and will vary 1:1 with power supply.

Table 5. 10H/100H TTL DC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0 \text{ V} \pm (5\%)$)

			T _A = 0°C		T _A = 25°C		T _A = 85°C		
Symbol	Characteristic	Condition	Min	Max	Min	Max	Min	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -15 mA I _{OH} = -24 mA	2.5 2.0		2.5 2.0		2.5 2.0		V
V _{OL}	Output LOW Voltage	I _{OL} = 48 mA		0.55		0.55		0.55	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. DC levels such as V_{OL} , V_{OL} , etc., are standard for PECL and FAST devices, with the exceptions of: I_{OL} = 48 mA at 0.5 V_{OL} ; and I_{OH} = -24 mA at 2.0 V_{OH} .

		T _A = 0°C		T _A = + 25°C			T _A = + 85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	ECL Power Supply Current 10H 100H		70 65	85 80		70 70	85 85		70 75	85 95	mA
I _{CCL}	TTL Supply Current		100	120		100	120		100	120	mA
I _{CCH}	TTL Supply Current		100	120		100	120		100	120	mA

Table 6. DC CHARACTERISTICS (V_{CCT} = V_{CCE} = 5.0V ±(5%))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

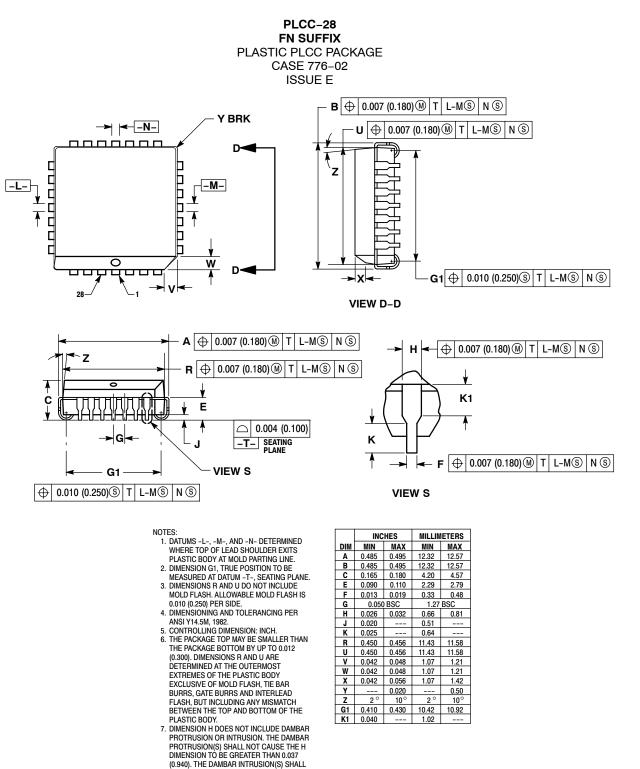
Table 7. AC CHARACTERISTICS ($V_{CCT} = V_{CCE} = 5.0 \text{ V} \pm 5\%$)

			$T_A = 0^{\circ}C$		T _A = + 25°C		T _A = + 85°C		
Symbol	Characteristic	Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} t _{PHH}	Propagation Delay to Output CLK to Q	CL = 50 pF	5.5 4.6	7.7 7.7	6.0 4.9	8.2 8.3	6.7 5.9	10.0 10.0	ns
t _{PHL}	Propagation Delay to Output MR to Q	CL = 50 pF	4.4	7.5	4.7	8.1	5.8	10.5	ns
t _{PW}	Minimum Pulse Width CLK, MR		1.0		1.0		1.0		ns
t _r	Rise Time	1.0 V to 2.0 V	0.5	2.0	0.5	2.0	0.5	2.0	ns
t _f	Fall Time	1.0 V to 2.0 V	0.5	2.0	0.5	2.0	0.5	2.0	ns
t _S	Setup Time		1.5		1.5		1.5		ns
t _H	Hold Time		1.5		1.5		1.5		ns
V _{PP}	Minimum Input Swing		200		200		200		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. Numbers are for both ++ and -- delay MR to Q.

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10H607FN	PLCC-28	37 Units / Rail
MC10H607FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100H607FN	PLCC-28	37 Units / Rail
MC100H607FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100H607FNR2	PLCC-28	500 / Tape & Reel
MC100H607FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). MECL 10 H is a trademark of Motorola, Inc.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees anising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees anising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and see and see and see and see and senting of the part. SCILLC is an Equal Opportunity/Af

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative